Linear Models with Outliers: Choosing between Conditional- Mean and Conditional- Median Methods
نویسندگان
چکیده
State politics researchers commonly employ ordinary least squares (OLS) regression or one of its variants to test linear hypotheses. However, OLS is easily influenced by outliers and thus can produce misleading results when the error term distribution has heavy tails. Here we demonstrate that median regression (MR), an alternative to OLS that conditions the median of the dependent variable (rather than the mean) on the independent variables, can be a solution to this problem. Then we propose and validate a hypothesis test that applied researchers can use to select between OLS and MR in a given sample of data. Finally, we present two examples from state politics research in which (1) the test selects MR over OLS and (2) differences in results between the two methods could lead to different substantive inferences. We conclude that MR and the test we propose can improve linear models in state politics research.
منابع مشابه
Detection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions
The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...
متن کاملRevisiting the Effects of Growth Uncertainty on Inflation in Iran:An Application of GARCH-in-Mean Models
This paper investigates the relationship between inflation and growth uncertainty in Iran for the period of 1988-2008 by using quarterly data. We employ Generalized Autoregressive Conditional Heteroscedasticity in Mean (GARCH-M) model to estimate time-varying conditional residual variance of growth, as a standard measures of growth uncertainty. The empirical evidence shows that growth uncertain...
متن کاملRobust portfolio selection with polyhedral ambiguous inputs
Ambiguity in the inputs of the models is typical especially in portfolio selection problem where the true distribution of random variables is usually unknown. Here we use robust optimization approach to address the ambiguity in conditional-value-at-risk minimization model. We obtain explicit models of the robust conditional-value-at-risk minimization for polyhedral and correlated polyhedral am...
متن کاملPortfolio Optimization Based on Cross Efficiencies By Linear Model of Conditional Value at Risk Minimization
Markowitz model is the first modern formulation of portfolio optimization problem. Relyingon historical return of stocks as basic information and using variance as a risk measure aretow drawbacks of this model. Since Markowitz model has been presented, many effortshave been done to remove theses drawbacks. On one hand several better risk measures havebeen introduced and proper models have been ...
متن کاملConditional Dependence in Longitudinal Data Analysis
Mixed models are widely used to analyze longitudinal data. In their conventional formulation as linear mixed models (LMMs) and generalized LMMs (GLMMs), a commonly indispensable assumption in settings involving longitudinal non-Gaussian data is that the longitudinal observations from subjects are conditionally independent, given subject-specific random effects. Although conventional Gaussian...
متن کامل